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Concentration dependence of solution shear viscosity and solute mass diffusivity

in crystal growth from solutions
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The physical properties of a supersaturated binary solution such as its density p, shear viscosity r/, and
solute mass diffusivity D are dependent on the solute concentration c: p=p(c), r/=r/(c), and D =D(c).
The diffusion boundary layer equations related to crystal growth from solution are derived for the case

of natural convection with a solution density, a shear viscosity, and a solute diffusivity that are all depen-
dent on solute concentration. The solution of these equations has demonstrated the following. (a) At the

vicinity of the saturation concentration c_ the solution shear viscosity r/ depends on p as
r/s : r/(p_ ) o:p_/2(cs ). This theoretically derived result has been verified in experiments with several aque-

ous solutions of inorganic and organic salts. (b) The maximum solute mass transfer towards the growing
crystal surface can be achieved for values of c where the ratio of d ln[D(c)/dc] to d ln[71(c)/dc ] is a
maximum.

PACS number(s): 61.30.--v, 64.60.Cn, 64.60.My, 47.15.Cb

I. INTRODUCTION

The problem of crystal growth from supersaturated
solutions is well known. In recent years there has been

considerable interest in crystal growth under microgravi-
ty conditions. However, there is no appropriate formal-
ism that accounts for both the hydrodynamic and the

thermodynamic aspects of the problem. The develop-
ment of such a formalism is of paramount importance in
understanding how the static and the dynamic charac-

teristics of a solution, such as its density, viscosity, and
diffusivity, are related to each other at concentrations at
saturation and above.

Current analytical approaches for the descriptions of

crystal growth from supersaturated solutions (see [1-3]
and references therein) neglect most of the significant
features of the solution's metastable state. These include

the nontrivial dependence of the solution density p, the
shear 7/ and the bulk _ viscosities, and the solute mass
diffusivity D on the solute concentration c. The usual

practice [1-3] has been to assume that these physical
characteristics are constants that are independent of

solute concentration. However, recent studies [4-11] of
supersaturated aqueous solutions of inorganic and organ-
ic salts have demonstrated that the solution density p, the
shear viscosity T/, and the solute mass diffusivity D have a
nontrivial dependence on the solute concentration c:
p=p(c), 7/=_/(c), and D =D(c), which becomes more

significant with deeper penetration into the metastable re-

gion. For example, the diffusivity D(c) declines to zero
at the spinodal line that separates metastable and unsta-

ble states. These facts have necessitated the development
of an appropriate formalism to describe crystal growth
from supersaturated solutions taking into account the

dependence of these physical properties of supersaturated
solutions on solute concentration.

II. NATURAL CONVECTION EQUATIONS
AND SOLUTION METASTABILITY

Let us consider the situation where a supersaturated
solution is mixed as a result of natural convection, which
arises due to a depletion of solute concentration near the

growing crystal surface. This depletion results in a

change in solution density and leads to the appearance of
concentration flows. However, because the solution has a

finite viscosity and sticks to the crystal solid interface, an

unmixed boundary layer is formed. Within this layer, ad-
jacent to the growing crystal surface, the solution can be
assumed to be stationary and the solute mass transfer is

achieved only by means of ordinary diffusion. In this pa-
per we assume that the crystal surface and the solution
have the same temperature and thus there is no heat
transfer.

Natural convection arises only when there is a change
of solution density occurring in a gravitational field and

only in those cases where the density gradient formed is
perpendicular to a gravitational field or when the solution

density increases from the bottom upward. The magni-
tude and the distribution of hydrodynamic and

diffusional flows depend primarily on geometry and, in

particular, on the shape and orientation of the growing
crystal surface. Generally, on the basis of the Bjerkness
theorem [12], one may expect that natural convection
will occur in such a way that surfaces of equal solution

density are oriented perpendicular to surfaces of equal
pressure. In this paper we consider the simplest case
where the growing crystal surface is a smooth vertical
plate placed in a gravitational field. The case of horizon-

tal orientation of the growing surface is considerably
more complicated and will be studied later.

Solution metastability implies that its density, shear
and bulk viscosities, and solute mass diffusivity are func-
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tions of solute concentration. Due to the crystal growth

process the solute concentration is different far from the
growing surface than at the crystal-liquid interface. It is
usually assumed that an entire change of solute concen-

tration occurs within the diffusion boundary layer (DBL)

_diff" At the growing crystal surface the solute concentra-
tion c must be greater than or equal to the saturation

concentration cs (c->c s) at the system temperature and

pressure. Outside the boundary layer the solute concen-
tration is a constant (c=c_), although it fluctuates in

time and space. Thus, within the boundary layer _diff, for

the case when the solution density p(c), the shear r/(c)
and the bulk _(c) viscosities, and the solute diffusivity
D(c) are weak functions of the solute concentration c one

can write the following Taylor expansions:

P(c)=p(c_)+ _ (-P_)_cc=c_ Ac[l+O(1)]' (1) p(c)

,1(c)=71(c _)+ O (_Oc c=c_ Ac[l+O(l)]' (2)

OD(c) c=c Ac[l+O(1)] (3)D(c)=D(c _ )+ _- c

where Ac=c--c_. The weakness concept for any

infinitely times differentiable function f (c) assumes that

d d'-lf(c) c=cIn den-1 Ac<<n where n_>2.
o_

In spite of the possible types of dependence of the func-
tion f(c) on c, fulfillment of the weakness concept is al-

ways expected for the case of small supersaturations
[Aclma_=tcs-c_[.

Let us take x 2=0 as the surface (010) of the growing

crystal plate, directing the x 2 axis into a solution and the

x I axis vertically upward. The lower ledge of the plate

corresponds to the value x I =0. As a supersaturated

solution flows parallel to the crystal plate, the thickness Ol.) 1

of the boundary layer 6di_r increases with the distance x l
from the lower ledge where flow meets the plate. There- 0xl

fore, the thickness _diff of the DBL can be considered as
an increasing function of xl: _diff=_diff(X1 ). Thus the

general Navier-Stokes equations describing the gravity-
induced two-dimensional steady laminar motion of

an incompressible supersaturated solution within
[X 2 <_6difl-(X 1 )] and beyond [X 2 >6diff(X I )] the DBL ac-

quire the form
where

20IIi j

j_l-_xj=Sag[p(c__ )--p(c_ )]O(5(li_(x,)--x2), (4a)

3vt 3v2

Oxt F_=O, (4b)

where

In the above expressions 118 is the density tensor of the

solution momentum flow, p is the solution pressure, v_

and v 2 are the solution velocity components, g is the

gravity acceleration, and 0(6die(X I )--X 2) is the unit step
function (Heaviside function) equal to 1 for 8di_(xl)->x2

and equal to 0 for 5di_(Xl )<X 2. Equation (4a) assumes
that solution is isotropic, i.e., r/(c) is the scalar quantity.

The continuity equation (4b) assumes that a supersaturat-
ed solution is an incompressible fluid. Utilizing the fact

that the DBL thickness 6di_X l ) is very small compared

to the length L along a crystal plate, one can significantly
simplify Eq. (4a). Thus, in the particular case where

8di_(X 1)/L << 1, the equation describing solution motion

along the x I axis acquires the form

Or1 Or1

[ Or1

0X 2_ 1"/'/(¢) 0_ 2

+g [p(c)--p(c _ )]O(6ditr(X l )--X 2 ) . (5)

This form implies the following assumptions imposed on
solution motion: (a) viscosity exerts a significant

influence only within a boundary layer, (b) flow velocity
must become zero at the solution-crystal interface, (c) the
solution retardation in a boundary layer is caused by

viscous forces alone, and (d) the pressure change in a
boundary layer is determined by its change outside and in

the natural convection case is negligible since solution
outside a boundary layer is almost stagnant. Substituting

into Eq. (5) expansions (1) and (2), which account for the
dependences of the solution density and the shear viscosi-
ty on solute concentration and keeping only the main

terms proportional to Ac and 0(Ac )/OX 2 one can rewrite

Eq. (5) as

_V 1

--vl +_x2 v2

02Vl [ O2Vl=- v_ 0x_- +a_ v_ 0x-_- -g

O [avl

AcO(8,_i_xl )-x2)

)-x 2) ] , (6)
1

_1(c _ )

v_ p(c_) '

0 ln[p(c)] c=_

0 ln['q(c)] c=c

Boundary conditions for Eq. (6) have the form
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Vl x2=0=V2 x2=0 =0 ,
(7a)

01 x2=oo=O2 x2=oo =0 "
(7b)

IIl. SOLUTION OF THE DERIVED EQUATIONS
FOR THE CASE OF NATURAL CONVECTION

IN SUPERSATURATED SOLUTIONS

Condition (7a) reflects the fact that solution sticks to the

crystal solid interface, whereas condition (7b) describes

solution stagnancy at the infinite distance from the DBL
edge. Thus Eqs. (4b) and (6), together with boundary
conditions (7a) and (7b) describe the hydrodynamic as-

pects of natural convection corrected by accounting for
solution metastability in the system supersaturated solu-

tion plus growing crystal surface.

I

½[f'(z )]2-¼f(z )f"(z) = -vo_ _f'"(z)[ 1+(r_ -coco )O(Sdi_X_)--X 2 )AC]

_'02

go3oo ]
"(Z) _AC + AC O(_diff(Xl)--X2) .

v°°r°_ c°lf_- _Z (_1C2)2

In order to simultaneously solve Eqs. (4b) and (6) let us
introduce the stream function _F(x t,z )= etx _/4f(g) and

z = C2x _1/4x 2 defined by the relations [12,13]

8_(xl,z )
- _1 _2 x I/2f '(z) , (8)

Vl -- _X 2

i3_(Xl'Z ) _lxll/4[3f(z)--f'(z) ] (9)
/32 _ -- _X 1 -- 4

where the dimension constants C l and _2 and the func-

tion f(z) are the quantities to be defined later. The intro-
duction of the stream function q)(xl,z) allows us to

rewrite Eq. (6) in the form

(10)

The equation obtained above can be satisfied only when the solute concentration c is understood as a function of the

variable z: c =c(z). In addition, as described above, there exists the equality c (z)----co for the case when x2 -> _diff(X 1 )"

This means that along the DBL edge the variable z is constant: z =z_. Therefore, after accomplishing straightforward

but cumbersome calculations we come to the following important conclusions: (a) the DBL thickness 8diff(X 1 ) is defined

by the relation

8dill(X 1 ): Z°¢ v 1/4 (1 la)
_2 "_1

and (b) in the vicinity of the DBL edge there exists the following expansion of A c = Ac (z):

Ac(z)=F_(z--z=)O(z_--z)+O((z--z_)2), F_-- Oc(Z)az _=_ ' (lib)

where O(zoo--z) is the Heaviside function [see definitions for expression (4a)]. Substituting now expansion (1 lb) into

Eq. (6), we obtain the nonlinear differential equation for the function f(z),

e2
½[f'(z)] 2- 3f(z)f"(z)= -vo_ _ f'"(z)[ l +(_-xo_ )F _(z-z= )O(z_ -z)]

C 2 gto_F
+vo_r_ ---_-F_f"(z)O(z_ --z ) o_ (z --z_ )O(z_ --z ) (12)

(_i(02)2

Let us look for a solution of this equation in the form

f (z)= f _(z )O(z_ -z ) +fb(z )O(z -zoo ) , (13)

where the functions fw(Z) and fb(z) give solutions of Eq.

(12) within and beyond the DBL. Equations for the func-
tion fw(Z) and fb(z) have the forms

I t 3 tt
v[fw(z)]2 7fw(z)fw(Z)

e2 ........

=--v®-_lJ,,, tzJt _+(w_o--x=)F=(z--z= )]

C2 " (z --z® ) (14a)
+v_r_F._f_(z) goo_F_

(_1C'02)2

I

1 t 2 3 " __2[fb(z)] --¥fb(g)fb (2) = --V_ f;"(z) . (14b)
/

Boundary conditions for these equations given in terms of

the functions fw(z) and fb(z) can be derived from rela-
tions (7)-(9) in the form

f_(z)l_=o=f_(z)l,=o=O ,

fb(z)t : =fVz)l = =o.

(15a)

(15b)

One of the possible solutions of Eq. (14a) subjected to
the boundary condition (15a), can be found as the series
expansion
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fw(Z)= _= --z" ,
0

(16)

where

fo =fl =f2 =0 ,

f3 m

go_ o_F _z _

v_ClC_[ l +(x.-co_)F_z_ ]

r_ro_z _ -- 1
f4 -- "f3 ,

1 +(r_-co_)r_z 2

3x_ --23)_
f5 -- f4 ,

1 +(r®--co_)r_zo_

4K_ -- 3w_

f6-- l+(r _oj_)r_z fs ,

(n - 1 )x_ -(n --2)oJ_
f.+l = fo

l +(r_--co_)r_z_

. 3 (n--2)!

-_Z'= 3 m !(n -m)!
[5re(n--m) - 3_n(n -1) ]

Xf_f_ _ m ,

where n _>6. This solution can be considerably simplified

if one assumes that the solution constant z o_ can be

defined as z_ = 1/(Foot® ). Such an assumption leads to

the vanishing of all expansion coefficients fn (n _>4) leav-

ing only one nonzero term in series (16) corresponding to

n --3,

f w(Z )- I 3 ga) _ (17a)
--_f 3z , f 3-- CIC3(2r _co_voo )

One of the possible solutions of Eq. (14b) subjected to

the boundary condition (15b) is

(92 1
(17b)

fb(Z) = -- 12V_ (_l Z

Both solutions fw(z) and fb(z) obtained correspond to

connective flows within and beyond the DBL and should

coincide along this layer edge f_,(Z_)=fb(z_). This

condition provides a way to determine the constant (92 in
the form

(p2_ 1 gco_ 1 1/4r_r_ 72v_(to_ --2r_) (18)

It is noteworthy that further agreement (patching) of the

solutions f_(z) and fb(z) is impossible since their first

derivative and all consequent derivatives are not equal

along the DBL edge. Therefore, one may conclude that

the problem general solution f(z), given by relation (13),

has discontinuity points along the DBL edge. To explain

this conclusion let us find velocity components v I and v 2

within and beyond the DBL. For this purpose results

(17a) and (17b) for the functions fw(z) and fb(z) have to

be substituted into the corresponding expressions (8) and

(9) for the velocity components:

ga)_
x_ , v2--0 (within),

vl= 2v_(2r_--a)_)

XI 1

vl=12v_22 , v2----12v_----'x2 (beyond).

It follows from the expressions obtained for the velocity

components v I and v 2 that within the DBL the tangent

velocity component v 1 is infinitely times greater than its

normal component v2, whereas beyond the DBL these

components become of the same order. This corresponds

to the following well-understood phenomenon of the

DBL separation: (a) within the DBL the solution motion

occurs along the crystal surface without side deviations

and (b) along the DBL edge the tangent and normal ve-

locity components become of the same order and the

DBL separation takes place. Thus the DBL edge can be

identified with the discontinuity line in solution motion

[13,14].

IV. THE DBL THICKNESS AND RELATIONSHIP

BETWEEN SOLUTION SHEAR VISCOSITY

AND DENSITY AT SATURATION POINT

Substituting relation (8) into expression (lla) for the

DBL thickness 8di_X I ) we obtain the result

[72v_ ( 2x _ - co _ )x _

_iai_x] )-- Igl_ (19)

In the expression above we have taken into account that

TABLE I. Dependence of solution density (g/cm 3) on solute concentration (mass fraction). The sat-

uration point is taken at 25"C and normal pressure.

Saturation point Intersection point

at 25"C between 7/(c_ )

Aqueous t_ of and normal pressure and 7]sample(C _ )
solution r/_mple(C_) a0 a l (in mass fraction) (in mass fraction)

KCI 0.904 1.013 0.571 0.264 0.268

ADP 1.739 0.998 0.564 0.283 0.253

KDP 1.294 0.996 0.744 0.200 0.195

TGS 1.437 1.005 0.367 0.231 0.215

glycine 1.329 1.000 0.343 0.198 0.183
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the x 1 axis and the gravity acceleration g are oppositely

directed. Thus, by means of the result (19), we have de-
rived how the hydrodynamics of natural convection are

related to thermodynamic metastability of supersaturated
solutions. In expression (19) metastability effects are tak-

en into account through the dependence of the solution
density p(c_ ) and the shear viscosity "q(c_ ) on the bulk

solute concentration ca.

An analysis of expression (19) obtained for the DBL
thickness 8di_(X l ) allows the following conclusions.
First, we have obtained the well-known result that

_diff(X1 ) grows as (x I/[g[ )1/4 (see [12-14] and references

therein). Second, we have derived how the DBL thick-

ness _diff(Xl) depends on the bulk solute concentration

c_ via such solution static and dynamic characteristics as

its density p(coo ) and viscosity _/(c_ ). This dependence

provides an opportunity to relate to each other the super-
saturated solution static and dynamic characteristics. In

particular, expression (19) allows a relationship between
the density p(c s ) and the viscosity r/(cs ) of supersaturated
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FIG. 1. Dependence of the bulk solution viscosity "q(c_ ) (cP)
on the bulk solute concentration ca (mass fraction) for the TGS

and glycine aqueous solutions. Solid lines correspond to experi-
mental data, whereas short-dashed lines correspond to interpo-
lation by means for the sample function l"]sample(¢ oo ).

solutions. It is apparent that a boundary layer should
vanish at the saturation point since at this point solution

and the growing crystal surface are in thermodynamic

equilibrium. As it follows from the result (19) obtained
for 6diff(X 1 ), such a situation is possible only when the fol-

lowing equality is satisfied:

co= l c= : c, = 2r = lco:_, • (20)

An analysis of Eq. (20) gives that at saturation point the
solution density p(c s ) and viscosity _/(c, ) should be relat-
ed as

rl( Cs )= Cp l /2( Cs ) . (21)

This result has been experimentally verified with inor-
ganic and organic aqueous solutions such as NaC1, KC1,

urea, ADP (NHaH2PO4), KDP (KH2PO4), TGS
[(C3HsNO2)3H2SO4] , and glycine [4-11] taken at 25°C

and normal pressure. For all these solutions it was found

that the dependence of their bulk densities p(c_)
on the bulk solute concentration c_ was linear:

p(c_ )=ao+alc _ (Table I gives coefficients a o and a 1
for different solutions). The error of such a linear inter-

polation of the experimental density data was always
within 0.01%. The experimentally obtained dependences

of the solution shear viscosity _/(coo ) on the bulk solute

concentration c_ for the TGS and glycine aqueous solu-
tion are presented in Figs. l(a) and l(b) (the experimental

error of the viscosity measurements is within 15%). In
these figures the solid lines correspond to the viscosity ex-

perimental data versus solute concentration whereas
short-dashed lines represent the sample function

T]sample(C_ ):_Dpl/2(Coo ). It follows from the straightfor-
ward comparison between the viscosity experimental data

line and the sample function line that their intersection
approximately corresponds (the error in correspondence

is within 15%) to the saturation concentration cs at the
given temperature and pressure for every tested solution

(see Table 1). Therefore, the analytically derived con-
clusion that at the vicinity of the saturation point there is

the specific relationship, given by expression (21), be-
tween the solution viscosity and the density is experimen-
tally confirmed with an accuracy of 85%.

V. SOLUTE FLOW TOWARDS
THE GROWING CRYSTAL SURFACE

To define a complete system of equations describing
isothermal solute diffusion in the natural convection case

one has to supplement the general Navier-Stokes and

continuity equations (4a) and (4b) by the corresponding
solute diffusion equation. For the particular case where a

supersaturated solution can be considered as an in-
compressible fluid and in the stationary limit, the two-
dimensional equation for the convective solute diffusion

acquires the form

°'+0 -S

(22)
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It is assumed in this equation that for the saturated and
the supersaturated solutions the solute mass diffusivity

D (c) is dependent on the solute concentration c. The evi-
dent analytical form of this dependence is not established
yet. However, numerous experimental investigations

[4-11] have demonstrated that D (c) is a nontrivial and

strong function of the solute concentration c. In order to
solve Eq. (22) within the DBL, it is assumed that there
exists an expansion (3) for the diffusivity D (c). The fol-

lowing utilization of the fact that the DBL thickness

8di_(x t ) is very small compared to the characteristic
length L of a crystal plate allows one to considerably sim-

plify Eq. (22):

Oc vl + O_2 v2Ox ]

(23)

where

a ln[D(c)] c=c_Y_ = 0c

It is noteworthy that T _ < 0 since in the supersaturated

region the solute mass diffusivity D(c, ) is a decreasing
function of the solute concentration c®: the diffusivity

D(c_ ) declines to zero when c o_ is approaching spinodal

concentration at the given temperature and pressure.
To solve Eq. (23) let us introduce the new couple

(xt,z) of independent variables, replacing (xl,x 2) by

(xt,z):

a _ a z a __ _o=e:x?l/,_
ax l ax l 4xl az ' ax 2 az

The following replacement of the velocity components v I

and v 2 by their expressions given by relations (8) and (9)
allows one to rewrite Eq. (23) in terms of the new couple

of independent variables:

f'(z) _c 3f(z) 0c
0x 1 4x I Oz

C 2 D(c_o) [ i)2c [Oc

e, x, '--[az2+r /Tz

where the function f(z) within and beyond the DBL is

given by relations (17a) and (17b), respectively. Taking
into account the conclusion, obtained in the analysis of

Eq. (10), that within the DBL the solute concentration c
is a function of the only variable z, c =c (z), provides the

following simplification of Eq. (24):

3 f(z) OC e2 [02c _c
---_ az--ctD(c_)[az2 +y_ _ O(z_o--z) •

(25)

In terms of the variable z, boundary conditions for this

equation can be reduced to the form

ac z =0c(z)lz=°=c(O)' -_z =B0[c(0)--c s] , (26)

where c(0) is the solute concentration on the growing

crystal surface (z =0). It is natural to assume that in the
crystal growing regime there exists the following double

inequality: cs < c(O) < c o_. The constant B0=B(c(0)) > 0
is the c (0)-dependent coefficient that characterizes the

rate of solute exchange between the crystal surface and
the solution. The second boundary condition (26) de-
scribes such a situation where the solute mass flow to-

wards a crystal surface is positive if c (0) _>cs .

The solution of Eq. (25) subjected to boundary condi-
tions (26) is straightforward:

c (z)=cw(z)O(zoo --z )+cb(z)O(z --z_ ) . (27)

In this expression cw(z) and cb(z) are the solutions for the

solute concentration profiles within and beyond the DBL,
respectively,

cw(z)=c(O)+kln[l+y_z_[3_[c(O)--c,]

z/z ]x fo dx e(9/4)Scx4

Cb(Z)=Co¢ ,

where Sc=v_/D(c_) is the Schmidt number. The

analysis of the solution c(z) for z=0 and z_ provides a

possibility to determine the coefficient [3o as the following
monotonically decreasing (without local extremum) func-
tion of c(0):

1 er_[c_-c(°)]--I [foldxe(9/41scx_l 1 (28)
[30- 7=zoo c(O)-c_

Substituting this expression for the coefficient [3o back

into relation (27) for the solute concentration c,,(z) we
obtain

c_'(z)=c(O)+ t_lny_:[ l+(er_[_-_l°l]-t)

X .[//_dx e 19/4)Scx4

f oldx e (9/4)Scx4

(29)

Differentiating this expression with respect to z and hav-
ing in mind the relationship (1 lb), one can derive the fol-

lowing condition imposed on the problem charcteristics:

F( 1 )= 1 --e r _[_(°)-_' ] (30)

where

F z = i _ e--(9/4)Scf ®dx e (9/41Scx4 .

It is noteworthy that F(z/z_ )<0 since y_ <0 in the su-

persaturated region. Utilization of condition (30) allows
one to rewrite the result (29) for the solute concentration
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cw(z) profile as the following function of the variable z:

cw(z)=c(O)+ l_ln
Y_ l--F(1

(31a)

Taking into account that Z=ZocX2/_)diff(Xl ), one can

represent expression (3 l a) for c_(z) in terms of the initial

coordinate variables x I and x2,

X2

F
5diff(X l )

Cw(Z)=c(O)+ l_ln 14 (31b)
y_ l--F(1)

In the crystal growth problem it is essential to know
the solute diffusional flux Jdiff(Xl,X2) directed towards

the growing crystal surface. This flux is defined as

OCw(Z) _6_l xl/4D ' )Oct(z)
Jdiff(z)=D(Cw ) Oz _Cw ()X 2

Let us find separately the flux Jdiff(z) on the DBL edge

[Xz=fditr(X 1) or z=z_] and on the crystal surface

(x 2=0orz =0):

Jdiff (X 1,8diff (X l ) ) =D(c _ )F _ , (32a)

D(C(0)) e -(9/4)Sc

Jdiff(Xl'O)=Jdiff(Xl'_diff(Xl)) O(co_) l--F(1) ' (32b)

where D(c(O)) is the solute mass diffusivity on crystal

surface and _°2 is given by expression (18). Having in
mind that within the DBL the solute diffusivity D (c) is a

weak function of the solute concentration c [an assump-
tion already used in expansion (3)], one may represent
D(c(O)) in the form:

D(c(O))=D(c_)

Therefore, the

1--Y_]"r_

ratio 3-(y_,K_,Sc)=Jdiff(Xl,O)/

Jdiff[X l,Sdiff(X 1 )], which characterizes the efficiency of the

solute mass transfer towards the growing crystal surface,
is given by the expression

( l +e)e -(9/4)Sc
3-(y _,r _,Sc )= 3-(e, Sc )=

-(9/4)Sc f01 (9/4)Sc_ 4 '1+ee d_e

(33)

where 6 = IY _ I/r_. The analysis of this expression gives

that the ratio 3-(e, Sc) is the monotonic function of the
both variables e and Sc. However, 3-(e, Sc) is the increas-

ing function of the variable e (0<e < _ ), whereas it is
the decreasing function of the variable Sc (0<Sc < _ ).

For the given Schmidt number Sc the ratio Me,Sc) ac-
quires a minimum value when e=0 and a maximum
when 6 = _ :

min[ 3.(x, Sc )l sc = const] = 3-(0, Sc ) = e -c9/4 lSc , (34a)

max[ M x, Sc )l s_= _o.st ]

/f ld_'e -(9'4)Sc_4] -1= 3-( _, Sc )= (34b)
t'0

Therefore, the most favorable regime for the solute mass

transfer corresponds to such solute concentration regions
where the ratio of d ln[D(c)]/dc to d ln[71(c)]/dc ac-

quires a maximum value. Expression (34b) for the ratio
3-(oo,Sc) can be considerably simplified if one makes use
of the Watson lemma [15] in the calculation of the in-

tegral involved. It is straightforward to demonstrate that

in the limiting case where Sc >> 4 there exists an approxi-
mation

ld_e(9/4)Sc¢4 1 e(9/4)Sc
9Sc

Substitution of this result back into relation (34b) pro-
vides the following simple expression for the ratio
M oo,Sc):

3-( _,Sc)=9 Sce -(9/4)Sc, (35)

where Sc >> ¼.

It is the usual situation when the solute mass diffusivity

D (c) is a stronger function of the solute concentration c
than the solution shear viscosity r/(c). Therefore, the

case of e=0 corresponds to a complete disregard of the c
dependence in diffusivity as well as in viscosity. On the
contrary, the case of •--- _ describes such concentration

regions where any change of solute concentration leads to
the much faster changing of the c-dependent diffusivity

than of the c-dependent viscosity. It is noteworthy that
accounting for the c dependence of the solute mass

diffusivity D(c) and the solution shear viscosity r/(c)
leads to an increase of the ratio Me, Sc) estimations

M0, Sc) < 3-( _ ,Sc).

VI. CONCLUSIONS

It follows from the analysis presented above that (a) in

the vicinity of the saturation concentration c_ there exists

the relationship between the solution shear viscosity and
density, rl(p_)'xpl/2(c_); (b) the most favorable regimes

for the solute mass transfer towards the growing crystal
surface can be achieved when • >> 1; and (c) the estima-

tions of solute mass flow towards the growing crystal sur-

face performed within the approaches disregarding the c
dependence ofD (c) and r/(c) lead to its underestimation.

It is well known that under microgravity conditions
one may expect a significant improvement in crystal
growth since the DBL thickness increases with the de-

crease of the gravity acceleration constant g [see expres-
sion (19)]. However, as it follows from expression (19), it

is not necessarily the case. For example, at low supersa-
turations the ratio (2r_/too_-l)/g can still be small

even at microgravity conditions. This prevents the for-
mation of the appropriate boundary layer needed for im-

provement of the crystal growth process. Thus, to
achieve such an improvement of crystal growth one has
to obtain supersaturations so that 2x_ ,/to >> 1.
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